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Additional file 1. Bayesian statistics 

 

a. Brief introduction to Bayesian statistics 

Contrary to frequentist methods in which population parameter estimates are based on the 

sample data only, Bayesian statistics allow accounting for prior information. Based on the 

sample data as well as provided information on the prior distribution, a posterior distribution 

of each parameter is computed. However, the Bayesian approach can be used even if there is 

no reliable prior information available. In this case, instead of setting informative priors, 

noninformative priors are set which impact the posterior distribution as little as possible.  

Information from the posterior distribution can be summarized in the form of a point estimate 

of the respective parameter (the mean, median or mode of the posterior distribution) as well as 

a 95% credible interval (CI; 2.5 and 97.5 percentiles). The CI can be used to assess whether a 

regression coefficient is likely to be non-zero and hence relevant for the prediction of the 

outcome. If the CI does not include zero, it is reasonable to assume that the regression 

coefficient is different from zero (i.e. statistically significant). Note, however, that any type of 

CI could be used to determine whether or not the parameter is different from zero (this is 

similar to frequentist approaches in which the p < 0.05 criterion is ultimately arbitrary as 

well). 

In contrast to frequentist methods, Bayesian estimation of the model proposed in this paper 

relies on Markov Chain Monte Carlo (MCMC) sampling, an approach that is based on 

simulation methods (see [1] for an overview on MCMC). It is necessary to understand the 

basic concept of MCMC to evaluate whether the model estimation has worked and the 

parameter estimates are reliable. MCMC combines the prior distribution and the information 

from the actual data through an iterative process obtaining a posterior distribution. Within this 

process, parameter values are sampled and used to update the posterior distribution. This 

procedure of sampling and updating is repeated many times (specified through the number of 
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iterations) and for multiple runs (specified through the number of chains). The first iterations 

of each chain are discarded and not used for inference, in order to reduce the influence of the 

starting values. These initial discarded iterations are often referred to the warm-up. To check 

whether the estimation process for each parameter estimate has converged, density and trace 

plots can be inspected (presented within the results). Another important criterion is the 

potential scale reduction factor which evaluates convergence through assessing differences 

between the chains. It is calculated for each parameter (between-chain variance/within-chain 

variance) and should be close to 1 (see [2–4] for details).  

 

b. Similarities and differences between Bayesian and frequentist-based two-part models 

The model we propose is based on Bayesian inference which raises the question how similar 

or different Bayesian two-part models are compared to frequentist-based models. Bayesian 

multilevel two-part models with non-informative priors, as used in this paper, are generally 

expected to yield similar estimates as maximum likelihood based approaches in the traditional 

frequentist framework [5]. However, it remains unclear whether or in which cases estimates 

of the Bayesian approach proposed in this paper are comparable to likelihood based estimates. 

Systematic simulation studies are needed to answer this question conclusively. Nonetheless, 

there are two distinct advantages of the Bayesian approach over the frequentist approach 

which should be taken into consideration: (1) Confidence intervals in the frequentist approach 

are often based on normality assumptions and are therefore defined as symmetrical (point 

estimate +/- 1.96 SE). As a result confidence intervals of random effects in the frequentist 

approach can include negative values. However, random effects are expressed by measures of 

variability (variance or SD) which cannot be negative. The Bayesian approach avoids this by 

incorporating prior distributions with only non-negative values which prevent negative 

estimates for random effect variances in the posterior distribution. (2) Maximum likelihood 

estimation can cause computational challenges and convergence difficulties, particularly 
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when models include complex random effect structures [5]. In general, Bayesian approaches 

have been shown to be more computational efficient [5,6] and are therefore suited particularly 

well for more complex data [5]. Nevertheless, future research is needed to examine if and 

when Bayesian approaches are more efficient than frequentist approaches for the two-part 

models used in this work. 
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